RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2019		
THIRD YEAR [BATCH 2017-20]		
Date : 14/12/2019 Time : 11 am - 1 pm	PHYSICS (Honours) Paper : VI [Gr. A] Full Marks :	50
=	w how the concept of wave-particle duality for radiation was established by blowing:	<10]
b) Photo-elec		
c) Compton s	cattering	
What are the m	athematical expressions of this wave-particle duality? (3+3+3	(+1)
2. a) What is De	e Broglie's concept of <i>matter wave</i> ?	
	expression for the De Broglie wavelength of a particle of mass μ and speed v.	(6)
b) What is the	e wavelength associated with an electron having energy $E = 200 eV$?	(4)
$[m_e = 9 \times 1]$	$D^{-31}kg \text{ and } h = 6.62 \times 10^{-34} m^2 \cdot kg/s$	
3. a) Distinguis	h between the group velocity v_g and phase velocity v_p of a wave packet.	
How are the	ey related?	
Show that	for a wave-packet of a non-relativistic particle with velocity $v = v_g$	(6)
b) State and e	xplain clearly Heisenberg's uncertainty principle.	
How is it r	elated to the wave-particle duality of matter?	(4)
4. a) Why are o	oservables in QM represented by given Hermitian operators?	
	n the operator representation for i) Position, ii) linear momentum and iii) energy in	
one dimen	sion. Hence show that the commutator $[x, p] = i\hbar$. (2)	2+4)
b) Show that functions.	if two quantum-mechanical operator commute they have the same set of Eigen	(4)
	In the time-dependent schrödinger equation (<i>TDSE</i>) for a particle moving in a assion in potential field $V(x)$.	
Hence obta	in the time-independent of the wave equation. (4	+1)
	bability density $p(x,t)$ to find the particle at point x and time t is given by	
b) If the pro	cubility density p (x,r) to find the particle at point x and time r is given by	
	$\psi(x,t) ^2$, where $\psi(x,t)$ satisfies the <i>TDSE</i> . Then show that $p(x,t)$ satisfies One-	

6. Determine the energy levels and corresponding normalised Eigen function of a particle in a one dimensional potential as follows:

$$V(x) = \infty \quad \text{for } x < 0 \text{ and } x > a$$

= 0 \quad for 0 \le x \le a \text{ (10)}

7. Consider $V(x) = \frac{1}{2}kx^2$ is the potential energy of linear harmonic oscillator. Prove that energy

Eigen values are
$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$
. Find the ground-state wave function. (10)

- 8. a) Write the three-dimensional time-independent Schrodinger equation for a particle moving in a central potential $V(\mathbf{r})$ and express it in spherical polar coordinates (r, θ, ϕ) . (5)
 - b) Use the method of separation of variables to obtain the differential equations for the radial and angular wave functions. (5)

_____ × _____